OPEN BOOK EXAM

Menofia University Faculty of Engineering Basic Engineering Sci. Department Academic Year: 2017-2018 Date : 30/12/2017

Minoutia University

Subject : Bio-Mathematics Code: BES 508 Time Allowed: 3 hours Year : Master Total Marks: 100 Marks

Allowed Tables and Charts: All allowed (Open Book)

Answer all the following questions: [100 Marks]

		[0.0]
Q.1	<u>Write brief notes on the following topics:</u>	[20]
	1. What is biomathematics? And Why to study biomathematics?	
	2. Biomathematics (show the steps of constructing a mathematical	
	model).	
	3. Biomechanics and Bio-fluid mechanics, view point of blood flow.	
	4. Biomedical engineering and its new career areas.	
	5. Bioengineering and Biomaterials and its applications.	
	6. Bioenvironmental engineering and Biosensors engineering.	
	7. Bioprocess engineering and tasks of bioprocess engineer.	
	8. Classification of Bio-signals?	
	9. What the Sources of Bio-Potential?	
Q.2	Consider pulsatile flow of an incompressible couple stress fluid	[20]
	between two permeable beds through a porous medium in the	
	presence of magnetic field. The fluid is injected into the channel from	
	the lower permeable bed with a velocity <i>V</i> and is sucked into the upper	
	permeable bed with the same velocity. The flow between the	
	permeable beds is governed by couple stress fluid flow equations of	
	Stokes. Let the x -axis be taken along the interface and the y -axis	
	perpendicular to it. Let $y = 0$ and $y = h$ represent the interfaces of the	
	permeable beds under consideration. The flow as axially symmetric	
	and fully developed. Draw the geometry of the problem. Write the	
	mathematical model.	
NACK WARD DOCTORS		New York Concerns

Q.3	If we consider a two-dimensional channel of uniform thickness 2d,	
Q.5		[20]
	filled with a compressible viscous liquid. The walls of the channel are	[20]
	deformed in the shape of a traveling sinusoidal wave with constant	
	amplitude a (Peristaltic motion). The vertical displacements of the	
	upper and lower walls ($y = d$ and $y = -d$) are thus presumed to be η and	
	η , respectively, x and y are Cartesian coordinates with x measured in	
	the direction of wave propagation and y measured in the direction	
	normal to the mean position of the walls. Write the mathematical	
	model of this problem.	
Q.4	Consider an axisymmetric flow of a mixture of small spherical solid	[20]
	particles and an incompressible Newtonian viscous fluid through a	
	uniform circular cylindrical tube. The tube wall is flexible on which are	
	imposed travelling sinusoidal wave with constant amplitude b	
	(Peristaltic motion). The flow in cylindrical coordinates (r, z) with z	
	measured in the direction of wave propagation, whereas r stands for	
	the radial coordinate. Write the mathematical model of this problem.	
Q.5	Consider axially symmetric and fully developed pulsatile flow of blood	[20]
	in an axisymmetric cylindrical artery of radius R through porous	
	medium with body acceleration under the influence of an external	
	uniform transverse magnetic field. Blood is assumed to be Newtonian,	
	incompressible, electrically conducting and viscous fluid. The fluid	
	subjected to a constant magnetic field acts perpendicular to the artery.	
	Assume that the magnetic Reynolds number of the flow is taken to be	
	small enough. Draw the geometry of the problem, then Write the	
	mathematical model of this problem.	
	-	

		Tł	nis exam n	neasures tl	ne following	ILOs		
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
	Q4-b				Q2-b	Q2-c	Q3-c	
	Knowledge &understanding skills				Intellectual Skills		Professional Skills	

Good Luck

Asst. Prof. Dr. Islam M. Eldesoky Dr. Eng. Ramzy M. Abumandour